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On a Class of Electromagnetic Wave Functions
for Propagation Along the Circular
Gyrotropic Waveguide

KAMEN P. IVANOV anp GEORGI N. GEORGIEV

Abstract —The properties of confluent hypergeometric functions as
exact electromagnetic wave functions for propagation in a circular wave-
guide containing azimuthally magnetized remanent ferrite are investigated.
Two different forms of solutions of the propagation problem for angular
symmetric transverse electric modes are constructed—one in terms of
Kummer and Tricomi confluent hypergeometric functions of complex
parameter and variable and a second in terms of Whittaker functions. An
evaluation of this class of wave functions is performed to sufficient extent,
followed by tabulation of their imaginary zeros, providing computation of
eigenvalue spectrum and phase characteristics of the gyrotropic guide.

I. INTRODUCTION

HE problem of finding exact wave functions for prop-

agation in anisotropic cylindrically stratified media is
still of considerable interest. A related subject is the study
of wave propagation along the circular waveguide, loaded
with ferrite or semiconductor, made anisotropic by the
application of an external azimuthal dc magnetic field
[11-[11]. Due to the tensor character of magnetic perme-
ability or permittivity of such media, the solution of propa-
gation problems leads to a system of second-order partial
differential equations for the longitudinal components of
electric and magnetic vectors. A direct solution of the
electromagnetic field equations becomes possible in the
degenerate case of angular symmetry only. The relevant
equations for modes exhibiting nonreciprocal properties in
such gyrotropic guiding structures are found to be Kummer
[11]-{14] or Whittaker [1], [2], [10] forms of the confluent
hypergeometric equation. The procedure of finding the
fundamental system of solutions of these equations either
in terms of Kummer and Tricomi functions or in terms of
Whittaker first and second functions is well established
[15]-[17], [20]. Nevertheless, many authors have avoided
these functions because of concern over their zeros and
insufficient tabulation [3], [6], [8].

This paper deals with the class of confluent hypergeo-
metric functions (CHF) of complex parameter and vari-
able as exact wave functions for angular symmetric TE-
mode propagation along a circular waveguide, filled with
ferrite, magnetized azimuthally to remanence by a coaxial
switching conductor of finite radius. Two different forms

Manuscript received July 30, 1985; revised March 12, 1986.

The authors are with the Institute of Electronics, Bulgarian Academy
of Sciences, Boulevard Lenin 72, Sofia-1784, Bulgaria.

TEEE Log Number 8609063.

of the exact solution of the propagation problem are
constructed: one in terms of Kummer and Tricomi func-
tions and a second in terms of Whittaker first and second
functions. The properties of these functions are discussed
to sufficient extent. The transcendental characteristic
equation of the structure derived in terms of CHF permits
us to draw conclusions about the nonreciprocal character
of wave propagation.

To facilitate the analysis, the switching conductor is
assumed infinitely thin, which reduces the guide cross
section into a simply connected region. The resulting struc-
ture is a canonical one for comprehensive study of Kummer
and Whittaker first functions, both being regular in the
whole region. Detailed tables of the wave functions and
their zeros, compiled for the first time, allow one to predict
the phase characteristics of the gyrotropic guide. The prac-
tical usefulness of the proposed exact analysis of wave
propagation stems also from the possibility of obtaining a
simplified asymptotic solution without cumbersome
numerical computation [14].

The study of this class of electromagnetic wave func-
tions is of particular interest in exploring a variety of
radially stratified guiding structures, containing azimuth-
ally magnetized ferrite or solid plasma, under angular
symmetric wave excitation.

II. FORMULATION OF THE PROBLEM

The structure to be considered is an infinitely long
perfectly conducting circular waveguide of radius r, loaded
with latching ferrite, magnetized azimuthally to remanence
by a coaxially positioned switching conductor of radius 7,
(Fig. 1), propagating fast electromagnetic waves. An ap-
propriate cylindrical coordinate system (r, 8, z) is adopted
with the z-axis along the geometric axis of the guide. The
remanent ferrite is characterized by a scalar lossless per-
mittivity € = ¢,¢, and a tensor permeability of the Polder
form

1 0 -—ja
E=pef0 1 0
Jja 0 1

where a= p =yM, /w, vy is the gyromagnetic ratio, M, is
the ferrite remanent magnetization, « is the angular
frequency of the propagating wave, and €y, g, are the free
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Fig. 1.

Geometry of the problem.

space permittivity and permeability, respectively. We con-
sider the whole ferrite medium magnetized to remanence
M, irrespective of the distance from the switching conduc-
tor. A positive or negative sign is ascribed to M,, corre-
sponding to its counterclockwise or clockwise direction
with respect to the direction of wave propagation.

11

Expressing the electric and magnetic vectors as column
vectors and writing the curl operator in matrix form, the
Maxwell equations in the ferrite medium for harmonic
time dependence exp( jw?) take the form

MATHEMATICAL TREATMENT

0 -D, r'p,||H E,
Dz 0 - Dr H0 = jw€0€r Eo (1)
—r''D, r''\Dr 0 H, E,
0 -p, rp,|[E
D, 0 - D, || Eg
—r Dy rDr 0 ||E
(1 0 - Ja | H,
== jope| 0 1 0 Hy| (2)
| ja 0 1 H,

where D,=d/0dr, Dy=0/00, D,= d/3dz are differential
operators.

Assuming a z-dependence of the form exp(— jBz), D,
= — JjB, where B is the phase constant of the incident wave
propagating in the direction of increasing z, and eliminat-
ing successively the transverse field components from (1)
and (2), the following system of two partial differential
equations for the longitudinal components of the electric
and magnetic vector is obtained:

1 1
(—D,rD,+/32 B+ —D,,)E + noa—DyH, =0
;

1

weoera7D9Ez -

1
(—D,rD, + B~ B*
r

1
—aﬁ + Do) =0 (3)

with B = wlopee,, :Bf @eoloE rhhetrs Mo =1— @ being
the effective relative permeability of azimuthally mag-
netized ferrite.
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The expressions

E =— (pp B+ 2pH ) 4
- y (4)
WEE, B
Ho 1312_32( r~z wioﬁr r BHz) ( )
Jj (B
Ey=——5——=| —DyE, — wp,D.H, + op.efH,| (6)
Bi—B*\r
wege, (1 ' B
—~D,E,———D,H,+ H, | (7
= Bl :82( wege, Phof z) )

permit us to find the transverse field components of the
propagating wave whenever the longitudinal components
E, and H, are known.

Restricting the discussion to angular symmetric fields
(D, = 0), the propagation problem can be formulated in
terms of a single longitudinal component of the electric or
magnetic field [12]-[14]. Referring to (4)—(7) the field
decomposes into TM (E,, Hy, E,) and TE (H,, Ey, H,)
modes depending on which longitudinal component is
present. In this degenerate case the system (3) splits into
two independent second-order ordinary differential equa-
tions for E, and H,

(o +g-p|Em0  ®

(lD,rD,-i-,sz—,Bz—-a,Bl)H = 9)
¥ r

The substitution, T, = (B¢ — B*)'/%, T, being the radial
wavenumber, transforms (8) into a zeroth-order Bessel
equation. Since the ferrite-filled region does not include
the origin » =0, the general solution for £, should be
written in the form

E, = AJy(T;r) + BNy(T;r) (10)

where J;, N, are zeroth-order Bessel and Neumann func-
tions and A, B are arbitrary constants.

By appropriate transformation of variables x = j28,r =
jz, By= (B —B*)"/* being the radial wavenumber, and
H,= y(x)e */2, (9) reduces to the Kummer form of the
confluent hypergeometnc equation [15], [16]

2

with ¢=1, a=0.5—_]k, and k=af/2B,. This equation
has regular and irregular singularities at 0 and oo, respec-
tively.

The fundamental system of solutions of (11) in the
double-connected ferrite-filled region excluding the origin
r=20, for ¢ a positive integer and a neither a negative
integer nor zero, is expressed in terms of Kummer and
Tricomi CHF @ and ¥, respectively [15], [16]:

y=C®(a,c;x)+ D¥(a,c;x) (12)
where C, D are arbitrary constants. The Kummer CHF is

+(c~ )———ay 0
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defined by the series

(a)

(13)

which is absolutely convergent for all values (real or com-
plex) of a,c, x except ¢c=0,—1,~2,—3,---. The Poch-
hammer’s symbol (A),, where A denotes any number (real
or complex) and » denotes any positive integer or zero, is
determined by the relation [19]

T(A+v)
T(A)

with T’ being the gamma function. In particular, (A),=1
and (1), = »!. @ is analytic, i.e., single-valued and differen-
tiable with respect to all x (real or complex). It is also
analytic of a, but not of ¢=0,—1,—-2,-3,---, for which
it has simple poles.

The Tricomi CHF is a multiple-valued function for
"which the zero is a branch point, with the main branch

A),=AA+D(A+2)-----(A+r-1) =

determined by the condition — 7 <argx < 7. Forc=/+1

(/=0,1,2,---), it is given by the expression [15], [16]

(_1)l+1

‘I'(a,l+1;x)—l'l_,( )

{<I>(a,l+1;x)lnx

2( X luat)

l'

—xl/(1+v)—1p(1+l+v)]} ‘

(=1t (a-1),
ST T T 9

The last sum in (14) vanishes for /=0. The function
Y(x)=T"(x)/T(x) is the logarithmic derivative of the
gamma function. As seen from (14), ¥ is defined for all
values (real or complex) of a, ¢, x, except x = 0.

Another approach for solution of the propagation prob-
lem is based on the transformations x = j28,r = jz, H,=
w(x)x~ Y% k= jaB/2B, = jk, which modifies (9) for H,
to the spec1a1 case (m=0) of Whittaker form of the
confluent hypergeometric equation [16], [17], [20]

d>w 1 « 1-4m?

dx? PO 4 * x * 4x? (15)
This equation could also be obtained directly from (11)
under the transformations w(x)= y(x)x°/%e~*/%, k=
(¢/2)— a, m = (¢ —1)/2. The fundamental system of solu-
tions of (15) is expressed in terms of Whittaker first and
second functions M, ,(x) and W, ,(x), respectively

w(x)=FM, ,.(x)+GW, . (x) (16)

F,G being arbitrary constants. The Whittaker first func-
tion M, ,(x) is defined by the infinite series [17]

el (1+m—|c)
5 (2m+1), !

w=0.

Mx,m(x) — x1/2+me—x/2

- (17)
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The Whittaker second function W, ,(x) for 2m an integer
is given by the expression [16]

(~1)"'M, (%) Inx

Wen(x) = T(A—m—x)-T(1+2m)
(—l)zmﬂxl/””‘e”‘/2 ot (%+m—x)”
S =y '{§ Dz r

~%[\l/(%+m—x+v)-—x]/(1+u)

—y(1+2m+»)]
2m (v—1)x
E (D2m-» (§_m+'€)v}. a8

For complex x, both M, ,.(x) and W, ,,(x) are multiple
valued in the complex x plane. The origin x=0 is a
branch point, and the point x = o0 is an essential singular-
ity point for these functions. Since [arg x| < 7, the princi-
ple branch of Whittaker CHF is considered [16], [17], [20].
In addition, M, ,(x)is analytic for all values of x, m, and
x, provided that m=—-(2/+1)/2 (/=0,1,2,3,---) and
W, n(x)—for all k,m,x, except x=0. Both ®(a,c; x)
and M, ,(x) are regular at zero, whereas ¥(a,c; x) and
W, m(x) tend to infinity for x — 0.

The transformation of (9) to (11) or (15) yields the
following expressions for H,:

=[C®(0.5— jk,1; j2B,r)

+ D¥(0.5- jk,1; j2B,r)] e Br (19)
H, = [FM, o(j2B,r)+ GW, o( j2B,r)] (j28,r) 2.
‘ (20)

The character of CHF as exact wave functions for propa-
gation of angular symmetric TE modes along the circular
gyrotropic guide becomes evident taking into account
@), (19), and (20).

To conclude this section, we list the relations between
the various CHF which could be used to verify the results
of the analysis [15]

M, (x)=x'2*me=*2@(L+ m—x,1+2m;x) (21)
W, .(x) =x22*me=*/2%(L+ m—k,1+2m;x). (22)

IV. TrANSVERSE FIELD COMPONENTS

The transverse angular symmetric field components are
readily obtained from (4)—(7), (10), (19), and (20), using
the derivative formulas and recurrence relations for the
cylindrical functions and CHF [16], [19]:

E,= (jB/T,)[ 44 (T;r)+ BN,(T;r)] (23)
Hy = (joece,/T;)|[ 45 (T;r) + BN, (Tyr)] (24)
Ey= (Jjopo/T})4B2(0.5— jk)r

[—0.5(0.5+ jk)C®(1.5— jk,3; j2B,r)

+ DY (1.5— jk,3; j2B,r)] e P (25)
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H = j{C[O.S(l ~ a?)Br& (1.5 jk,3; j2B,r)

+a®(0.5— jk,1; j2B,r)]
(1-a*)Br
D| - ———¥(15— jk,3; j2
+ [ 0.5+ jk ( J J2B,r)
}e_jﬁzr.

Alternately, the components E,, H, could be expressed in
terms of the Whittaker CHF

Ep={wpo/T?)28,(0.5— k)
[=0.5(0.5+ k) FM, ,(j2B,r)
+ GW, 1(728,0)] (j2B,r) 1

+a¥(0.5— jk,1; j2B,r) (26)

@)
o, { F(1- a®)(8/48,) M, o 126:7)
+ jaMx,o(JQ:Bz")]

1-a?

+ G[— 05+x (B/2B2)WK,1(J'2BJ)

+jam,o(jzﬁzr)}}(jzﬁzr)’“. (28)

An inspection of (10), (23), and (24) reveals that the TM
set of fields (E,, Hy, E,) expressed in terms of Bessel and
Neumann functions is independent of remanent ferrite
magnetic parameters. Since the only magnetic field compo-
nent Hy is everywhere parallel with the remanent magneti-
zation M,, no interaction is possible between the TM
mode and the ferrite. Thus, the angular symmetric TM
mode propagates along the gyrotropic guide as in a cir-
cular guide filled with isotropic dielectric of permittivity €.

Of major interest is the fast wave propagation of the
angular symmetric TE (H,, E4, H,) mode expressed either
in terms of Kummer and Tricomi, or in terms of Whittaker
functions of complex parameter and variable (8, real).
This mode exhibits a strong dependence on the sign and
magnitude of M, as seen from the parameters of all wave
functions. Consequently, a change of field pattern and
power handling capability of the guide under angular
symmetric TE mode excitation should be expected when
the ferrite remanent magnetization is reversed in the
azimuthal direction.

The expressions of the field components are simplified
considerably if the switching conductor becomes infinitely
thin. In this case the anisotropic ferrite region includes the
origin. To meet the requirements for finite fields, we put
the arbitrary constants B= D =G =0, yielding simpler
expressions of field components in terms of Bessel,
Kummer, and first Whittaker functions, all regular at
r=0.

Equations (21) and (22) permit an easy transition be-
tween the expressions of field components in terms of
different CHF.

V. CHARACTERISTIC EQUATIONS

Applying the boundary conditions at the interfaces r =r,
and r=r;, we obtain the following transcendental char-
acteristic equations for TM and TE modes, respectively:

Jo(Try) _ Jo(Tyr)

NO(FfrO) No(rf’l)
(15— jk,3; j2Byry) (1.5 jk,3; j2Byr)
V(15— jk,3; 2Byry)  ¥(L5— jk.3; j2Bor)

Following the same procedure or substituting (21) and (22)
into (30), the following characteristic equation for angular
symmetric TE modes could also be obtained in terms of
Whittaker functions:

Mx,1(j232r0) _ Mn,l(jzﬁﬂl) (31)
Wc,1(12/?2’0) W:,1(J'2.32"1)'

Equation (29) is easily recognized as the characteristic
equation of the angular symmetric TM mode in the coaxial
waveguide filled with isotropic dielectric of permittivity e,.

We now concentrate on the two forms of the character-
istic equation for the angular symmetric TE mode (30) and
(31), written in terms of CHF. Both characteristic equa-
tions involve implicitly the phase constant, parameters of
the gyrotropic medium, structure geometry, and frequency.

The second Kummer theorem [16] (cf. the Appendix),
for k = 0, 2a neither a zero nor a negative integer and 2m
not a negative integer, facilitates checking the results of
analysis against the case of angular symmetric TE mode
propagation in the dielectric-loaded waveguide. Introduc-
ing a=0 (k=0,8,=TI}) in (30) and (31), the well-known
equation for the dielectric-loaded coaxial guide is obtained
as follows:

(29)

(30)

Jl(rfrO) _ J1(Ffr1)
Nl(rfrO) Nl(rfrl).

(32)

One important subcase is of special interest. Assuming
an infinitely thin switching conductor (r; = 0), the guide
cross section transforms to a simply connected region,
containing the regular singularity point » = 0 of Neumann,
Tricomi, and Whittaker second functions. In view of this,
the characteristic equations (29)—(31) take the following
simpler forms:

Jo(Ti1) =0
®(1.5— jk,3; j2B,r,) =0 (34)
Mx,l(j2B2r0) =0. (35)

The circular gyrotropic guide with an infinitely thin
switching conductor is a canonical structure for rigorous
study of the eigenfunctions ®(a, ¢; x) and M, ,(x), regular
at zero, and their eigenvalues. As seen from (17) or (21),
the zeros §, , of ® and M coincide since the factor
x1/2*tm.e=x/2 has no zeros. The characteristic equations
(34) and (35) require simply that 28,r,=¢, ,.$, , being
the nth consecutive zero of the Kummer and Whittaker
first function, for given k (x= jk),n=1,2,3,---. This
restricts the radial wavenumber B, to have one of the

(33)
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following discrete values:

Br=$k.n/210 (36)

which define the eigenvalue spectrum of the angular sym-
metric TE mode.

The analysis shows the existence of two phase constants
B, and B_ of the propagating TE, , mode for +k and
—k

B.= [“’Zfoﬂofrﬂeff‘(fik,n/z"o)z]l/z (37)
determined by the two stable states of remanent magneti-
zation.

In what follows, we study the properties of wave func-
tions to provide an exact numerical solution of the char-
acteristic equations (34) and (35) and computation of the
phase characteristics of the gyrotropic guide. For an ap-
proximate approach to the solution of (34), based on the
asymptotic expansion of exact wave function ®(aq,c; x),
the reader is referred to [14].

VI. PROPERTIES OF ELECTROMAGNETIC

WAVE FUNCTIONS

The exact solution of the propagation problem in the
circular gyrotropic waveguide with infinitely thin switching
conductor requires detailed knowledge of the Kummer or
Whittaker first CHF of complex parameter and variable.
The eigenvalue analysis needs the finding of imaginary
zeros of the wave functions, which provide computation of
phase characteristics of the guide. In view of this, a de-
tailed numerical evaluation of ®(1.5— jk,3; jz) and
M, 1(jz) has been accomplished for the first time, fol-
lowed by extensive study of their descriptive properties
and a tabulation of their imaginary zeros.

Fig. 2 is a plot of loci curves of ®(1.5— jk,3; jz) in the
complex plane for k= +0.1 (solid curve) and k= —0.1
(dashed curve), while Fig. 3 shows the variations of Re @
(solid curves) and Im® (dashed curves) versus z for k =
0, +0.1, £0.3, £0.5. The points of intersection of Re®
and Im® with coordinate axes should be examined more
closely. As seen from Fig. 3, all curves of the family Re @
start from unity at the vertical axis and intersect the
horizontal one at the points z = (2rn ~ 1w, (n=1,2,3,--+)
for all k. The lines Im® beginning at zero intersect the
z-axis at points z = (n —1)2m, irrespective of the value of
k. These features of Re® and Im® could easily be ob-
tained analytically from the first Kummer theorem [16].
Curves of both families, corresponding to the same k,

intersect simultaneously the horizontal axis at points {; ,,

depicting the consecutive zeros of ®. Moreover, it is worth
noting that {, , increases with k.

The loci curves of M ,(jz) in the complex plane are
plotted in Fig. 4(a) and (b) for k=+0.1 and k= —0.1,
respectively. The point representing M, ,(jz) moves along
a segment of the bisectrix of the second and fourth
quadrants, starting from zero and passing through the
origin at consecutive zeros {, , of the function. The middle
point of the segment coincides with the point zero in the
complex plane, its length being twice the modulus of the
maximum of the Whittaker function M, ,(jz).

857

®(1.5- k,3;)2)

Fig. 2. Loci curves of ®(1.5— jk,3; jz) in the complex plane for k£ =
+0.1.

Re @
Im & 0.5
1.2 + LA

Fig. 3.

Real and imaginary parts of the Kummer function ®(1.5—
Jk,3; jz) versus z for k=0, +0.1,+03,+0.5.

Fig. 5 shows the variation of Re M, ;(,jz) (solid curves)
and Im M, ,(jz) (dashed curves) versus z for k=
0,+0.1,+0.3, +£0.5. The points of intersection of both
curves for the same k at the z-axis define the zeros {, , of
the function. It should be emphasized that the real and
imaginary parts of M, ,(jz) exhibit perfect symmetry
with respect to the horizontal axis.
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M+|0.1,1 (jz)

(a)

Im
i4r
z=°4n3 o M—,o.m(jz)
50N L
n2 12 3,
6 \/‘ 4

(b)

Fig. 4. Loci curves of the Whittaker first function M, ;(jz). (a) k=+0.1 (b) k=-0.1.

ReM,, ,(jz) 0.5
imM, L (z2) | Rl

8

6

4

2

0

-2

-4

-6

| Re H“",(ix)
_e -

Fig. 5. Real and imaginary parts of the Whittaker first function M, ,(z) versus z for k =0, +0.1,+0.3, £0.5.

The modulus and argument of the Kummer and
Whittaker first function are plotted against the variable z
in Figs. 6 and 7 for k= +0.1. The analysis reveals that
arg @ is a linear function of z with constant slope 1/2 and
discontinuities at each consecutive zero {, , of ® where it
increases abruptly by #. Arg M is a step function of z with
initial value (3/4)w, having step increases by # at each
consecutive zero §, , of M.

Referring to (17) or (21), it is seen that the factor
x1/D+me=x/2 introduced by Whittaker transforms the
single-valued Kummer function ®(a, ¢; jz) having simple
and elegant properties into a multiple-valued function
M, ,.(jz). This factor complicates the computations in-
volving M, , (jz), but makes its main branch symmetrical,

as evident from Figs. 4(a) and (b) and 5. This symmetry is
of considerable importance in compiling tables of
Whittaker first functions.

As mentioned above, the zeros of Kummer and
Whittaker CHF coincide. Table I(a) lists the first and
second imaginary zeros {, ;, {, , and Table I(b) lists the
third and fourth zeros §; 3, 4 of ®(1.5— jk,3; jz) and
M, 1(jz) to nine decimal places for k over the range

= —1.0 (0.1)+1.0. A comparison of §,,+§,, with the
30 figure tabulated zeros of Bessel functions J; [18], taking
into account the second Kummer theorem [16] (cf. the
Appendix), gives an excellent accuracy. The distribution of
the first four zeros {; , of ® (1.5— jk,3; jz), respectively,
M, 1(jz) versus k, is plotted in Fig. 8. The curves intersect
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14 L 14
1.2 - 12
1.0 - 10

L
0.8 I 8
0.6 -6
0.4 M4
0.2 r2
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Fig. 6. Modulus and argument of the Kummer function ®(1.5 — jk,3; jz) versus z for k= +0.1.
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Fig. 7. Modulus and argument of the Whittaker first function M, (jz) versus z for k= +0.1.

the ordinate axis (k = 0) at points §, ,= 2, ,, », , being
the nth consecutive zero of Bessel function J; (cf. (42) in
the Appendix)

VII. APPLICATION OF WAVE FUNCTIONS

As an example of how the wave functions studied in the
previous sections can be applied, we shall take the case of
the circular gyrotropic guide, filled with azimuthally mag-
netized remanent ferrite. We are interested in the phase
characteristics of this structure. The relations B2+ B? =
1—a? k=aB/2B, and Table I(a) are used to compute

the normalized phase characteristics B_(ﬁ)) of the structure
for the TE,, mode. The quantities ,B=,B/BO\/Z , B=
Ba/Byfe, and Fy=Byrefe, =¢, /2B, are the phase con-
stant, radial wavenumber, and guide radius, normalized
with the free space phase constant B, = w/e,py = w/c and
the square root of relative permittivity e, (¢ being light
velocity in free space). The results are plotted in Fig, 9 for
positive and negative directions of M, (solid and dashed
lines) with p =+yM,/w as parameter. The phase of the
TE,, mode propagating along the guide can be shifted
digitally by the reversal of M,. The normalized differential
phase-shift AB=pf_— B, may easily be computed from
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TABLE I
(a) FIRST AND SECOND ZEROS OF ® (1.5 — jk,3; jz) AND Mjkyl(jz)
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k

-1.0
-0.9

+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
+1.0

[

4,475
4,709
4.961
5.232
5.521
5.830
6.159
6.507
6.875
7.260
7.663
8,081
8.514
8.958
9.414
9.877
10.348
10.825
11.306
11.790

12.276

k,

I

056
734
885
365
865

107
704
411
794
210
896
057
345
921
503
387
459

782

705
370
767
644
663
452
497
558
390
635
940

373

447
790

308

272
988
616

505

Cx

3.577

9.942
10.325
10.727
11.147
11.586
12.042
12.516
13.006
13.512
14.031
14.561
15.102
15.652
16.208
16.769
17.333
17.900
18.467
19.035

19.603

22

795

228
950
863

235

687
879
326
384
639
544
465
694
713
497
339
239
099
729
485
612
853
114
312
241

310

(b) THIRD AND FOURTH ZEROS OF ®(1.5— jk,3; jz) AND

M, 1(jz)

X Ly Ty
-1.0 15.074 466 O11 20.775 857 695
0.9 15.527 595 295 21.294 022 412
-0.8 15.998 093 617 21.828 676 575
-0.7 16.486 001 509 22.379 746 636
-0.6 16,991 173 472 22.946 979 485
-0.5 17.513 244 550 23.520 011 221
-0.4 18.051 607 427 24.127 847 096
-0.3 18.605 395 505 24.739 847 206
0.2 19.173 485 800 25.364 732 009
0.1 19.754 518 280 26.001 103 039
0.0 20.346 936 270 26.647 384 457
+0.1 20.9490 044 396 27.301 878 653
0.2 21.559 079 516 27.962 839 912
+0.3 22.175 279 508 28.628 541 489
+0.4 22.795 962 249 29.297 357 807
+0.5 23.419 572 550 29,967 759 708
+0.6 24.044 726 293 30.638 462 659
+0.7 24.670 233 475 31.308 251 067
+0.8 25.295 100 809 31.976 379 688
+0.9 25.918 526 932 32.641 958 372
+1.0 26.530 884 234 33.304 553 267

S

30 |

2V, n=3

N

vy,

-1.0 -0.5 0 0.5 1.0
k

Distribution of the first four imaginary zeros of ® (1.5~ jk,3; jz)
and M, \(jz) with k.

Fig. 8.
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Fig. 9. Normalized phase characteristics of the azimuthally magnetized

ferrite-loaded circular guide.

the characteristics. Thus, the circular gyrotropic guide ap-
pears to be a suitable device configuration for the single-bit
ferrite remanent phaser.

At the bifurcation points of each two branches of phase
characteristics for given values of p, 8, =0 and B_=#0,
i.e.,, the TE,,; mode propagation is possible for negative
M, only. This feature reveals the additional potentialities
of the gyrotropic guide as a fast remanent cutoff switch
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with two stable operation states (on and off positions),
corresponding to — M, and + M,, respectively.

Also shown in the same figure for completeness are
curves of B versus 7, of the homogeneously filled circular
guide with isotropic dielectric of permittivity €, for the
first four angular symmetric TE modes.

VIIL

A class of electromagnetic wave functions for propa-
gation along the circular guide, containing latching ferrite,
magnetized azimuthally to remanence by a coaxially posi-
tioned switching conductor of finite radius, is presented.
The straightforward solution of Maxwell equations yields a
system of second-order partial differential equations for
the longitudinal components of electric and magnetic vec-
tors which shows the existence of a six-component electro-
magnetic wave in the anisotropic ferrite. In the degenerate
case of angular symmetric fields, this system splits into two
independent second-order ordinary differential equations
describing TM and TE modes. The TM modes propagate
along the gyrotropic structure as in a circular guide filled
with isotropic dielectric. Of special interest is the equation
for the longitudinal component of the magnetic field,
which is found to be the Kummer or Whittaker form of
the confluent hypergeometric equation involving ferrite
magnetic parameters. Two ways of writing the TE field
components are presented—in terms of Kummer and
Tricomi CHF and in terms of Whittaker first and second
functions. A profound discussion of the properties of these
exact wave functions is performed, describing the nonre-
ciprocal character of TE mode propagation in the gyro-
tropic guide. Two forms of the characteristic equation of
the circular gyrotropic guide under angular symmetric TE
modes excitation are derived.

Assuming an infinitely thin switching conductor, the
structure is reduced to a ferrite-filled circular guide—a
canonical structure for comprehensive study of the
Kummer and Whittaker first function of complex parame-
ter and variable and their eigenvalues. These wave func-
tions are evaluated numerically, and tables of their imagin-
ary zeros have been compiled for the first time. Based on
the numerical and graphical results, conclusions are drawn
concerning the behavior of this class of wave functions.

The normalized phase characteristics of the structure for
the TE, ; mode, calculated by means of tabulated imagin-
ary zeros of wave functions, are presented graphically for a
variety of geometry and ferrite parameters. Two important
effects in the gyrotropic guide—nonreciprocal phase shift-
ing and magnetically controlled cutoff-—experienced by
the TE,, mode are established, which can be used in
designing ferrite control components for microwave fre-
qucencices.

The wave functions studied in this paper may be of
interest in boundary-value analysis of guiding structures
with circular symmetry, containing gyrotropic media mag-
netized azimuthally to the direction of wave propagation.

CONCLUSION
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APPENDIX
‘SECOND KUMMER THEOREM

The Second Kummer theorem [16] gives the relationship
between the CHF and cylindrical functions

®(a,2a; j2x) = e*(5x)2 T(a+1)J, 1 2(x) (38)
¥(a,2a; j2x) = Wr e/, (x)(2x) 277 (39)
My (% j2x) = T(1+ m)e*in/21/24m)

Q2L () (40)

X
Woon(126) = || o e 7202 mED () (4)

where H®, ,, = H(? is an mth-order Hankel function of
the second kind.

According to (38) and (40), the consecutive roots § ,
(n=1,2,3,...) of ®(15,3; j2x) and M,,(j2x), and the
roots »; , of Ji(x) are related by the expression
(42)

§0,n = 2pl,n'
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