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On a Class of Electromagnetic Wave Functions
for Propagation Along the Circular

Gyrotropic Waveguide

KAMEN P. IVANOV AND GEORGI N. GEORGIEV

,4/retract —The properties of confluent hypergeometric functions as

exact electromagnetic wave fnnctions for propagation in a circular wave-

gnide containing azimnthally magnetized remanent ferrite are investigated.

Two different forms of solntions of the propagation problem for angular

symmetric transverse electric modes are constructed-one in terms of

Kummer and Tricomi confluent hypergeometric functions of complex

parameter and variable and a second in terms of Whittaker functions. An

evaluation of this class of wave functions is performed to sufficient extent,

followed by tabulation of their imaginary zeros, providing computation of

eigenvahre spectrum and phase characteristics of the gyrotropic guide.

I. INTRODUCTION

T HE problem of finding exact wave functions for prop-

agation in anisotropic cylindrically stratified media is

still of considerable interest. A related subject is the study

of wave propagation along the circular waveguide, loaded

with ferrite or semiconductor, made anisotropic by the

application of an external azimuthal dc magnetic field

[1]-[11]. Due to the tensor character of magnetic perme-

ability or permittivity of such media, the solution of propa-

gation problems leads to a system of second-order partial

differential equations for the longitudinal components of

electric and magnetic vectors. A direct solution of the

electromagnetic field equations becomes possible in the

degenerate case of angular symmetry only. The relevant

equations for modes exhibiting nonreciprocal properties in

such gyrotropic guiding structures are found to be Kummer

[11] -[14] or ,Whittaker [1], [2], [10] forms of the confluent

hypergeometric equation. The procedure of finding the

fundamental system of solutions of these equations either

in terms of Kummer and Tricomi functions or in terms of

Whittaker first and second functions is well established

[15] -[17], [20]. Nevertheless, many authors have avoided

these functions because of concern over their zeros and

insufficient tabulation [3], [6], [8].

This paper deals with the class of confluent hypergeo-

metric functions (CHF) of complex parameter and vari-

able as exact wave functions for angular symmetric TE-

mode propagation along a circular waveguide, filled with

ferrite, magnetized azimuthally to remanence by a coaxial

switching conductor of finite radius. Two different forms
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of the exact solution of the propagation problem are

constructed: one in terms of Kummer and Tricomi func-

tions and a second in terms of Whittaker first and second

functions. The properties of these functions are discussed

to sufficient extent. The transcendental characteristic

equation of the structure derived in terms of CHF pm-nits

us to draw conclusions about the nonreciprocal character

of wave propagation.

To facilitate the analysis, the switching conductor is

assumed infinitely thin, which reduces the guide cross

section into a simply connected region. The resulting struc-

ture is a canonical one for comprehensive study of Kummer

and Whittaker first functions, both being regular in the

whole region. Detailed tables of the wave functions and

their zeros, compiled for the first time, allow one to predict

the phase characteristics of the gyrotropic guide. The prac-

tical usefulness of the proposed exact analysis of wave

propagation stems also from the possibility of obtaining a

simplified asymptotic solution without cumbersome

numerical computation [14].

The study of this class of electromagnetic wave func-

tions is of particular interest in exploring a variety of

radially stratified guiding structures, containing azimuth-

ally magnetized ferrite or solid plasma, under angular

symmetric wave excitation.

II. FORMULATION OF-THE PROBLEM

The structure to be considered is an infinitely long

perfectly conducting circular waveguide of radius rO IIoaded

with latching ferrite, magnetized azimuthally to remanence

by a coaxially positioned switching conductor of radius rl

(Fig. 1), propagating fast electromagnetic waves. h ap-

propriate cylindrical coordinate system (r, 0, z) is adopted

with the z-axis along the geometric axis of the guide. The

remanent ferrite is characterized by a scalar lossless per-

mittivity c = c~c, and a tensor permeability of the Polder

form

[1
1 0 –ja

p=p~ o 1 0
ja O 1

where a = p = ylkf,/u, y is the gyromagnetic ratio, M, is

the ferrite remanent magnetization, CJ is the angular

frequency of the propagating wave, and c~, p ~ are the free
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I..Ll
Fig. 1. Geometry of the problem.

space permittivit y and permeability y, respectively. We con-

sider the whole ferrite medium magnetized to remanence

M, irrespective of the distance from the switching conduc-

tor. A positive or negative sign is ascribed to M,, corre-

sponding to its counterclockwise or clockwise direction

with respect to the direction of wave propagation.

III. MATHEMATICAL TREATMENT

Expressing the electric and magnetic vectors as column

vectors and writing the curl operator in matrix form, the

Maxwell equations in the ferrite medium for harmonic

time dependence exp (jot) take the form

[

o – DZ

1[

r – lDQ H,

D= o – D, HO

– r–lDe r– lD,r O HZ

I

o – D,

1! I

r – lDO E.

D, o – D, EO

— r – lDe r– lD,r O E=

I 1 0 -jal~H,l

‘-’o’ol~:: El ‘2)
where D,= d/dr, DO = d/6W, D= = 6’/6’z are differential

operators.

Assuming a z-dependence of the form exp ( – j~z), D,

= – j~, where/3 is the phase constant of the incident wave

propagating in the direction of increasing z, and eliminat-

ing successively the transverse field components from (1)

and (2), the following system of two partial differential

equations for the longitudinal components of the electric

and magnetic vector is obtained:

(

1
~DrrD,+~~–~2+ r2 ~

)
~D2 E,+upofxiD H =0

rez

1

(
‘D,rD, +&-/32uOc VaJDe EZ — r

)

– ~p: + $D~ Hz= O (3)

– 1 – rrz beingwith /3~ = ti2CoPocr, Pf2 = ~2~OpO~~peff, Peff —

the effective relative permeability of azimuthally mag-

netized ferrite.

The expressions

j

‘r=- B?-b’ (
/3DTE= + ‘DOH,

)
(4)

r

(5)

(jP )–D@Ez – upOD,H, + qLo@H= (6)
‘e=- Pf-b’ r

permit us to find the transverse field components of the

propagating wave whenever the longitudinal components

E, and Hz are known.

Restricting the discussion to angular symmetric fields

(DO = O), the propagation problem can be formulated in

terms of a single longitudinal component of the electric or

magnetic field [12] –[14]. Referring to (4)–(7) the field

decomposes into TM (E,, HO, E=) and TE (H,, Eo, Hz)

modes depending on which longitudinal component is

present. In this degenerate case the system (3) splits into

two independent second-order ordinary differential equa-

tions for E, and H,

(8)

(9)

The substitution rf=(~~–/32)1/2, rf being the radial

wavenumber, transforms (8) into a zeroth-order Bessel

equation. Since the ferrite-filled region does not include

the origin r = O, the general solution for E= should be

written in the form

Ez=A~o(rfr) +~NO(rfr) (lo)

where .1O,No are zeroth-order Bessel and Neumann func-

tions and A, B are arbitrary constants.

By appropriate transformation of variables x = j2f12r =

jz, /32 = (&–/32)1/2 being the radial wavenumber, and

Hz= y(x) e- ‘/2, (9) reduces to the Kummer form of the

confluent hypergeometric equation [15], [16]

d2y
—+(c–x)~–ay=O

x dx=
(11)

with c =1, a = 0.5- jk, and k = a~/2/12. This equation

has regular and irregular singularities at O and co, respec-

tively.

The fundamental system of solutions of (11) in the

double-connected ferrite-filled region excluding the origin

r = O, for c a positive integer and a neither a negative

integer nor zero, is expressed in terms of Kummer and

Tricomi CHF @ and V, respectively [15], [16]:

y= C@(a, c;x)+D*(a, c;x) (12)

where C, D are arbitrary constants. The Kummer CHF is
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defined by the series

w (a), x“
@(a, c;x)=~—

, .(c), ”;
(13)

which is absolutely convergent for all values (real or com-

plex) of a, c, x except c = O, – 1, – 2, – 3,. - “ . The Poch-

hammer’s symbol (A)r, where A denotes any number (real

or complex) and v denotes any positive integer or zero, is

determined by the relation [19]

r(~+v)
(A) V= A(A+1)(A+2) . . ..-(l )=-1)= r(A)

with r being the gamma function. In particular, (A) ~ = 1

and (1). = v!. @ is analytic, i.e., single-valued and differen-

tiable with respect to all x (real or complex). It is also

analytic of a, but not of c = O, – 1, – 2, – 3,00., for which

it has simple poles.

The Tricomi CHF is a multiple-valued function for

which the zero is a branch point, with the main branch

determined by the condition – T < arg x < r. For c = 1+ 1‘

(1=0,1,2,.. .), it is given by the expression [15], [16]

V(a,l+l; x)=
(-1) ’+1

(
O(a,l+l; x)lnx

f!r(a–~)

-+(l+V)-*(l+I+V)]
}

The Whittaker second function W., Jx ) for 2m an integer

is given by the expression [16]

w (x)= (;l)’~+%~,m(x)lnx

Ic, m
r(l–m–~)<r(l+2m)

+ (-1)
2m+lxll*+me– Xl*

. ~(~+m-~)

r(~–rn-K)
{ ~ (l)2nl+ “ ‘

“;[4(i+m-K+v)-w+v)

-tj(l+2m+v)]

(18)

For complex x, both M., ~(x) and W., ~(x) are multiple

valued in the complex x plane. The origin x = O is a

branch point, and the point x = m is an essential singular-

ityy point for these functions. Since Iarg x I < r, the princi-

ple branch of Whittaker CHF is considered [16], [17], [20].

In addition, M., ~(x) is analytic for all values of K, m, and

x, provided that m = – (21+1)/2 (1= 0,1,2,3,. . . ]1 and

W., m(x)—for all K, m, X, except x=0. Both Q(a, c; x)
and M., ~(x) are regular at zero, whereas *(a, c; x) and

W., ~(x) tend to infinity for x ~ O.
The transformation of (9) to (11) or (15) yields the

following expressions for Hz:

HZ= [C@(O.5– jk,l; j2~2r)

+ D*(O.5- jk,l; j2/12r)] e-j~zr (19)
)

Hz= [~%o(~z132~) + GJK,0(j213zr)] (j2132r)-1’2.
(~-l)! ‘~1 (a-l), xv-’

. —. (14) (20)
+ 17(a) ~ (1–1), v!

The character of CHF as exact wave functions for propa-
The last sum in (14) vanishes for 1= O. The function

t)(x) = I“(x)/r(x) is the logarithmic derivative of the

gamma function. As seen from (14), T is defined for all

values (real or complex) of a, c, x, except x = O.
Another approach for solution of the propagation prob-

lem is based on the transformations x = j2f12r = jz, Hz=

W(x)x - 1/2, K = ja~/2f12 = jk, which modifies (9) for HZ

to the special case (m= O) of Whittaker form of the

confluent hypergeometric equation [16], [17], [20]

d2w

(

lK l–4m2
—+ –~+;+
dx’ 4x 2 )

W=o. (15)

This equation could also be obtained directly from (11)

under the transformations w(x) = y(x)x c/2e– ‘/2, K=

(c/2) – a, m = (c – 1)/2. The fundamental system of solu-

tions of (15) is expressed in terms of Whittaker first and

second functions M~, ~ (x) and WK,m(x), respectively

w(x) = FM., ~(x)+ GW~,~(x) (16)

F, G being arbitrary constants. The Whittaker first func-

tion M. ~(x) is defined by the infinite series [17]

m(; +m-K) x’

‘., m(X) ‘X1/2 +me-’/2~
, (2m+l)Vv” Z” ’17)

gation of angular symmetric TE modes along the circular

gyrotropic guide becomes evident taking into account

(4)-(7), (19), and (20).

To conclude this section, we list the relations between

the various CHF which could be used to verify the results

of the analysis [15]

ikf.,~(x) =xl/2+’”e ‘xi2~(~+ m–K,l+2m; X) (21)

WE+M(X) =xl/2+me ‘x/2~(} +~– K,1+2~; X). (22)

IV. TRANSVERSEFIELD COMPONENTS

The transverse angular symmetric field components are

readily obtained from (4)–(7), (10), (19), and (20), using

the derivative formulas and recurrence relations for the

cylindrical functions and CHF [16], [19]:

%= (wq)[~Mqd+ W(q”)] (23)

HO= (j@toCr/rf)[A~l(rfr)+ ~~l(r’r)] (24)

Ee = (j~pO/r~)4&(0.5- jk)r

. [-0.5(0.5+ jk)C@(l.5- jk,3; j2f12r)

+ DV(l.5– jk,3; j2/32r)] e-j~’r (25)
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(H,= j CIO.5(1– a2)~r@(l.5– jk,3; j2~2r)

+ a@(O.5– jk,l; j2&r)]

[

(1 - a2)&
+D –

0.5 + jk
~(1.5– jk,3; j2~zr)

I)+ W(O.5- jk,l; j2~zr) e-~fl”. (26)

Alternately, the components E@,H, could be expressed in

terms of the Whittaker CHF

Ed= (@pO/r~)2&(().5–’)

. [-0.5(0.5+ IC)FMW,l( j2~2r)

+GW~1(j2&r)]( j2~zr)-1’2 (27)

{
H,= F[(l– a2)(/3/4~2)A4.,1 (j2~2r)

+ .MK,0(jzP2r)]

[

l–a2
+G – ~(B/2P2)WK,1(j2P2r)

I}+-@K0(M2r) (JV32r)-1’2. (28)

An inspection of (10), (23), and (24) reveals that the TM

set of fields (E., He, E,) expressed in terms of Bessel and

Neumann functions is independent of remanent ferrite

magnetic parameters. Since the only magnetic field compo-

nent H@ is everywhere parallel with the remanent magneti-

zation M,, no interaction is possible between the TM

mode and the ferrite. Thus, the angular symmetric TM

mode propagates along the gyrotropic guide as in a cir-

cular guide filled with isotropic dielectric of permittivity c,.

Of major interest is the fast wave propagation of the

angular symmetric TE (H,, E@,H,) mode expressed either

in terms of Kummer and Tricomi, or in terms of Whittaker

functions of complex parameter and variable (BZ real).

This mode exhibits a strong dependence on the sign and

magnitude of M, as seen from the parameters of all wave

functions. Consequently, a change of field pattern and

power handling capability of the guide under angular

symmetric TE mode excitation should be expected when

the ferrite remanent magnetization is reversed in the

azimuthal direction.
The expressions of the field components are simplified

considerably if the switching conductor becomes infinitely

thin. In this case the anisotropic ferrite region includes the

origin. To meet the requirements for finite fields, we put

the arbitrary constants B = D = G = O, yielding simpler

expressions of field components in terms of Bessel,

Kummer, and first Whittaker functions, all regular at

r=O.

Equations (21) and (22) permit an easy transition be-

tween the expressions of field components in terms of

different CHF.

V. CHARACTERISTIC EQUATIONS

Applying the boundary conditions at the interfaces r = r.

and r = rl, we obtain the following transcendental char-

acteristic equations for TM and TE modes, respectively:

Jo ( rfro) Jo ( 17frl)

No ( rfro) = No ( rfrl)
(29)

0(1.5– jk,3; j2&ro) 0(1.5– jk,3; j2/32r1)

V(l.5– jk,3; j2/32ro) = V(l.5– jk,3; j282r1) “
(30)

Following the same procedure or substituting (21) and (22)

into (30), the following characteristic equation for angular

symmetric TE modes could also be obtained in terms of

Whittaker functions:

M,1(JW2ro) _ f%,l(.tW2r1)

Jtl(J2B2~o)– JZK,l(jW2r1)“
(31)

Equation (29) is easily recognized as the characteristic

equation of the angular symmetric TM mode in the coaxial

waveguide filled with isotropic dielectric of permittivit y c,.

We now concentrate on the two forms of the character-

istic equation for the angular symmetric TE mode (30) and

(31), written in terms of CHF. Both characteristic equa-

tions involve implicitly the phase constant, parameters of

the gyrotropic medium, structure geometry, and frequency.

The second Kummer theorem [16] (cf. the Appendix),

for k = O, 2a neither a zero nor a negative integer and 2m

not a negative integer, facilitates checking the results of

analysis against the case of angular symmetric TE mode

propagation in the dielectric-loaded waveguide. Introduc-

ing a = O (k = O, ~2 - rf) in (30) and (31), the well-known
equation for the dielectric-loaded coaxial guide is obtained

as follows:

J1(rfrO ) Jl(rfrl)

Nl(rfro) = Nl(rfrl) “
(32)

One important subcase is of special interest. Assuming

an infinitely thin switching conductor ( rl = O), the guide

cross section transforms to a simply connected region,

containing the regular singularity point r = O of Neumann,

Tricorni, and Whittaker second functions. In view of this,

the characteristic equations (29)–(31) take the following

simpler forms:

~o(rfro) co (33)

@(l.5–jk,3; j2@2ro)=0 (34)

~K,1(j2P2~o) =0. (35)

The circular gyrotropic guide with an infinitely thin

switching conductor is a canonical structure for rigorous

study of the eigenfunctions @(a, c; x) and M.,l(x), regular

at zero, and their eigenvalues. As seen from (17) or (21),

the zeros {~,. of @ and M coincide since the factor
x(1/’) + m. e – x/2 has no zer~~s. The characteristic fXpatiOnS

(34) and (35) require simply that 2B2ro = {~,., {~,. being

the n th consecutive zero of the Kummer and Whittaker

first function, for given k (~= jk), n = 1,2,3, . . . . This

restricts the radial wavenurnber & to have one of the
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following discrete values:

fi2 = ~k,n/2r0 (36)

which define the eigenvalue spectrum of the angular sym-

metric TE mode.

The analysis shows the existence of two phase constants

~+ and ~. of the propagating TEO,. mode for + k and

–k

~~ = [@2~oPo~rkeff -({~,, n/2ro)2]1’2 (37)

determined by the two stable states of remanent magneti-

zation.

In what follows, we study the properties of wave func-

tions to provide an exact numerical solution of the char-

acteristic equations (34) and (35) and computation of the

phase characteristics of the gyrotropic guide. For an ap-

proximate approach to the solution of (34), based on the

asymptotic expansion of exact wave function O(a, c; x),

the reader is referred to [14],

VI. PROPERTIESOF ELECTROMAGNETIC

WAVE FUNCTIONS

The exact solution of the propagation problem in the

circular gyrotropic waveguide with infinitely thin switching

conductor requires detailed knowledge of the Kummer or

Whittaker first CHF of complex parameter and variable.

The eigenvalue analysis needs the finding of imaginary

zeros of the wave functions, which provide computation of

phase characteristics of the guide. In view of this, a de-

tailed numerical evaluation of @(l.5 – jk, 3; jz) and

~Jk,l( jz) has been accomplished for the first time, fol-
lowed by extensive study of their descriptive properties,

and a tabulation of their imaginary zeros.
Fig. 2 is a plot of loci curves of @(l.5 – jk, 3; jz) in the

complex plane for k = +0.1 (solid curve) and k = – 0.1

(dashed curve), while Fig. 3 shows the variations of Re @

(solid curves) and Im@ (dashed curves) versus z for k =

O, +0.1, A 0.3, ~ 0.5. The points of intersection of Re @

and Im @ with coordinate axes should be examined more

closely. As seen from Fig. 3, all curves of the family Re @

start from unity at the vertical axis and intersect the

horizontal one at the points z = (2n – 1)7, (n= 1,2,3,. ..)

for all k. The lines Im @ beginning at zero intersect the

z-axis at points z = (n – 1)2 r, irrespective of the value of

k. These features of Re @ and Im@ could easily be ob-

tained analytically from the first Kummer theorem [16].

Curves of both families, corresponding to the same k,

intersect simultaneously the horizontal axis at points {k, ~,

depicting the consecutive zeros of ID. Moreover, it is worth

noting that {k,” increases with k.

The loci curves of Mjk,l(jz) in the complex plane are

plotted in Fig. 4(a) and (b) for k = +0.1 and k = – 0.1,
respectively. The point representing Mjk, 1( jz ) moves along

a segment of the bisectrix of the second and fourth

quadrants, starting from zero and passing through the

origin at consecutive zeros {k,. of the function. The middle

point of the segment coincides with the point zero in the

complex plane, its length being twice the modulus of the

maximum of the Whittaker function M,. , ( iz ).

Im

}
,1.0

[. k=+O,l @(l.5-lk,3; ,z)

-,0,2

t

Fig. 2. Loci curves of @(l.5 – jk, 3; jz) in the complex plane for k =
+0.1.

Re @

lmcD

1

0.5
,-.

1.1 # i, Im$i

Reo J’ ‘/

-0.8

t

v0.5

Fig. 3. Real and imaginary parts of the Kummer function @(1.5 –

Jk,3; JZ) versus z fork= O, ~0.1, iO.3, +0.5.

Fig. 5 shows the variation of Re Mjk,l( jz) (solid curves)

and Im kfj~, 1( jz ) (dashed curves) versus z for k =

O, +0.1, +0.3, +0.5. The points of intersection of both

curves for the same k at the z-axis define the zeros (k,. of

the function. It should be emphasized that the red and

imaginary parts of ~J~,l(jz ) exhibit perfect symmetry

with respect to the horizontal axis.
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Z=5 lm

6
M +,o.l,l(iz)

7

-4 -2 0

~n
4

-,2

,4-.
11

(a)

Fig. 4. Loci curves of the Whittaker

ReMj, ,(jz)

lmrni~,(lz)

8

6

4

2

0

-2

-4

-6

-a

Fig. 5. Real andimag

first function

2=4
M-, o.l,l(jz)

%3
s .,

Q

2 ,2

6.

4

Re
~n

-12 %

9 ‘b”
30

-4 -2

I

-j4
t

(b)

M,~,l(-iz). (a) k= +0.1 (b) k = –0.1.

0.s
-s,

.

~ryparts of the Wtitt&er first function M,k,l(jz)versusz fork =0, -+0.1, +0.3, +0.5.

The modulus and argument of the Kummer and

Whittaker first function are plotted against the variable z
in Figs. 6 and 7 for k = + 0.1. The analysis reveals that

arg @ is a linear function of z with constant slope 1/2 and

discontinuities at each consecutive zero r~,. of @ where it

increases abruptly by n. Arg M is a step function of z with

initial value (3/4) m, having step increases by ~ at each

consecutive zero {~, ~ of M.

Referring to (17) or (21), it is seen that the factor
x (liz) + ‘e – X/2 introduced by Whittaker transforms the

single-valued Kummer function @(a, c; jz ) having simple

and elegant properties into a multiple-valued function

M., ~(jz). This factor complicates the computations in-

volving M., ~ ( jz), but makes its main branch symmetrical,

as evident from Figs. 4(a) and (b) and 5. This symmetry is

of considerable importance in compiling tables of
Whittaker first functions.

As mentioned above, the zeros of Kummer and

Whittaker CHF coincide. Table I(a) lists the first and

second imaginary zeros {~,1, f~,2 and Table I(b) lists the
third and fourth zeros {~,q, {~,d of 0(1.5 – jk, 3; jz) and

Mj~,l(jz) to nine decimal places for k over the range
k = – 1.0 (0.1)+ 1.0. A comparison of (.,l + {O,d with the

30 figure tabulated zeros of Bessel functions .lI [18], taking

into account the second Kummer theorem [16] (cf. the

Appendix), gives an excellent accuracy. The distribution of

the first four zeros {~,. of @ (1.5 – jk, 3; jz ), respectively,

iW,~, 1( jz) versus k, is plotted in Fig. 8. The curves intersect
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Fig. 6. Modulus andargument of the Kummerfunction @(l.5-jk)3; jz)versus zfork=f O.1.

[M,k,, (jz)l

8

6

4

2

0

1
k=+O.1 arg M 1

1

arm,,,,

B

6

4

2

0

Fig. 7. Modulus andargument of the Whittaker first function MJk,l(jz) versus zfork=-+O.l

the ordinate axis (k=O) at points {0, n=2v1,., VI,. being

the rzth consecutive zero of Bessel function ~1 (cf. (42) in

the Appendix)

VII. APPLICATION OF WAVE FUNCTIONS

AS an example of how the wave functions studied in the

previous sections can be applied, we shall take the case of

the circular gyrotropic guide, filled with azimuthally mag-

netized remanent ferrite. We are interested in the phase

characteristics_of @is structure. The relations ~2 + ~~ =

1 – a2, k = a~/2/12 and Table I(a) are used to compute

the normalized phase characteristics ~(~) of the strugur~

for the TEO,l mode. The quantities /3 = @//30~, f12 =

~Z/~O~ and 70= fiorbfi = {k, I/2~2 are the phase cOn-

stant, radial wavenumber, and guide radius, normalized

with the free space phase constant ~.= u== u/c kd

the square root of relative permittivity c, (c being light

velocity in free space). The results are plotted in Fig, 9 for

positive and negative directions of M, (solid and dashed

lines) with p = yM,/u as parameter. The phase of the

TEO,l mode propagating along the guide can be shifted

digitally by the rev~rsal of M,. The normalized differential

phase ~shift A~ = ~ _ - ~+ may easily be computed from
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TABLE I

(a) FIRST AND SECOND ZEROS OF @(l.5 – jk, 3; JZ) AND kf,k,l(jz)

k

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

+0.1

+0.2

+0.3

+0.4

+0.5

+0.6

+0.7

+0.8

+0.9

+1.0

‘k, !

4.475 0S6 705

4.709 734 370

4.961 885 767

5.232 365 644

5.521 865 663

5.830 8S6 452

6.159 534 497

6.507 77S S58

6.875 107 390

7.260 704 635

7.663 411 940

8.081 794 373

8.514 210 131

8.958 896 447

9.414 057 790

9.877 945 308

10,348 921 178

10.825 503 272

11.306 387 988

11.790 459 616

12.276 782 50S

ck, z

9.577 795 687

9.942 777 879

10.325 939 326

10.727 561 384

11.147 732 639

11.586 309 544

12.042 886 465

12.516 772 694

13.006 989 713

13.512 285 497

14.031 173 339

14.561 989 239

15.102 964 099

15.652 301 729

16.208 253 485

16.769 181 612

17.333 604 853

17.900 228 114

18.467 950 312

19.035 863 241

19.603 235 310

(b) THIRD AND FOURTH ZEROS OF 0(1.5 – jk,3; jz) AND

M,h.l(jz)

k Lk ~ Ck ~

-1.0 15.074 466 011 20.775 857 695

-0.9 15.527 595 295 21.294 022 412

-0.8 15.998 093 b17 21.828 676 575

-0.7 16.486 001 509 22.379 746 636

-0.6 16,991 173 472 22.946 979 485

-0.5 17.513 ?.44 559 23.529 911 221

-0.4 18.051 607 427 24.127 847 096

-0.3 18.605 395 505 24.739 847 206

-0.2 19.173 485 800 25.364 732 009

-0.1 19.754 518 280 26.001 103 039

0.0 20.346 936 270 26.647 384 457

+0.1 20.949 044 396 27.301 %7!3 653

+0.2 21.559 079 516 27.962 839 912

+0.3 22.175 279 508 28.628 541 489

+0.4 22.795 962 249 29.297 357 807

+0.5 23.419 572 55o 29.967 759 708

+0.6 24.044 726 293 30.638 462 659

+0.7 24.670 233 475 31.308 251 067

+0.8 25.29S 100 809 31.976 379 688

+0.9 25.918 526 932 32.641 958 372

+1.0 26.539 884 234 33.304 553 267

Fig. 8.
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Distribution of the first four imaginary zeros of @(1.5 – jk, 3; jz)
and MjA,l(jz)withk.

NORMALIZED GUIOE RADIUS l?..r.~

Fig. 9. Normalized phase chmactefistics of thetimuthdly magnetized
ferrite-loaded circular guide.

the characteristics. Thus, thecircular gyrotropic guide ap-

pears to be a suitable device configuration for tlie single-bit

ferrite remanent phaser.

At the bifurcation points of each two branches of phase

characteristics for given values of p, ~+=0 and ~_ #O,

i.e., the TEO: ~ mode propagation is possible for negative

AZ, only. Tlus feature reveals the additional potentialities

of the gyrotropic guide as a fast remanent cutoff switch
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with two stable operation states (on and off positions),

corresponding to – M, and + M,, respectively.

Also shown in the same figure for completeness are

curves of ~ versus 70 of the homogeneously filled circular

guide with isotropic dielectric of permittivity ~, for the

first four angular symmetric TE modes.

VIII. CONCLUSION

A class of electromagnetic wave functions for propa-

gation along the circular guide, containing latching ferrite,

magnetized azimuthally to remanence by a coaxially posi-

tioned switching conductor of finite radius, is presented.

The straightforward solution of Maxwell equations yields a

system of second-order partial differential equations for

the longitudinal components of electric and magnetic vec-

tors which shows the existence of a six-component electro-

magnetic wave in the anisotropic ferrite. In the dege~erate

case of angular symmetric fields, this system splits into two

independent second-order ordinary differential equations

describing TM and TE modes. The TM modes propagate

along the gyrotropic structure as in a circular guide filled

with isotropic dielectric. Of special interest is the equation

for the longitudinal component of the magnetic field,

which is found to be the Kummer or Whittaker form of

the confluent hypergeometric equation involving ferrite

magnetic parameters. Two ways of writing the TE field

components are presented—in terms of Kummer and

Tricomi CHF and in terms of Whittaker first and second

functions. A profound discussion of the properties of these

exact wave functions is performed, describing the nonre-

ciprocal character of TE mode propagation in the gyro-

tropic guide. Two forms of the characteristic equation of

the circular gyrotropic guide under angular symmetric TE

modes excitation are derived.

Assuming an infinitely thin switching conductor, the

structure is reduced to a ferrite-filled circular guide— a

canonical structure for comprehensive study of the

Kummer and Whittaker first function of complex parame-

ter and variable and their eigenvalues. These wave func-

tions are evaluated numerically, and tables of their imagin-

ary zeros have been compiled for the first time. Based on

the numerical and graphical results, conclusions are drawn

concerning the behavior of this class of wave functions.
The normalized phase characteristics of the structure for

the TEO, ~ mode, calculated by means of tabulated imagin-

ary zeros of wave functions, are presented graphically for a

variety of geometry and ferrite parameters. Two important

effects in the gyrotropic guide—nonreciprocal phase shift-

ing and magnetically controlled cutoff — experienced by

the TEO ~ mode are established, which can be used in

designing ferrite control components for microwave fre-
quencies.

The wave functions studied in this paper may be of

interest in boundary-value analysis of guiding structures

with circular symmetry, containing gyrotropic media mag-

netized azimuthally to the direction of wave propagation.

APPENDIX

SECOND KUMMER THEOREM

The Second Kummer theorem [16] gives the relationship

between the CHF and cylindrical functions

@(a,2a; j2x) =e’x(~x) 112-ar(a+*)J=_~,z(x) (38)

*(a,2u; j2x) = ~fiey(x-”W)H~?l,z( x)(2x) 1’2-a (39)

MO, ti(f j2x) = r(l+ ~)e*jm/zfl/z+m)

.22m+l/2.xl/2~~(x)

H@J is an m th-order Hankelwhere H:? ~,z = ~

the second kind.

((40)

(41)

function of

According to (38) and (40), the consecutive roots {., ~

(n =1,2,3,...) of 0(1.5,3; j2x) and M0,1(j2x), ancl the

roots Vl,. of ~l(x ) are related by the expression

((),.= w.. (42)
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